Levee Integrity and Subsidence: Tied at the Hip for the Future of the Delta

Chris Enright
DWR
October 4, 2004
It’s all been said before
It’s all been said before

• The Delta levee system is at high risk for major failure.
It’s all been said before

- The Delta levee system is at high risk for major failure.
- Major failure recovery, if attempted, will be long and costly.
It’s all been said before

• The Delta levee system is at high risk for major failure.
• Major failure recovery, if attempted, will be long and costly.
• The Delta ecosystem will change.
It’s all been said before

- The Delta levee system is at high risk for major failure.
- Major failure recovery, if attempted, will be long and costly.
- The Delta ecosystem will change.
- Project export water quality is at risk.
It’s all been said before

- The Delta levee system is at high risk for major failure.
- Major failure recovery, if attempted, will be long and costly.
- The Delta ecosystem will change.
- Project export water quality is at risk.
- Subsidence is a primary risk and cost driver.
What this talk is about

• Saying the obvious about Delta levees and subsidence
• What we learned from Jones Tract
• What we didn't learn
• Levee stability
• Needed science

Levee integrity and subsidence are tied at the hip
What this talk is about

• Saying the obvious about Delta levees and subsidence
What this talk is about

• Saying the obvious about Delta levees and subsidence
• What we learned from Jones Tract
What this talk is about

- Saying the obvious about Delta levees and subsidence
- What we learned from Jones Tract
- What we didn’t learn
What this talk is about

• Saying the obvious about Delta levees and subsidence
• What we learned from Jones Tract
• What we didn’t learn
• Levee stability
What this talk is about

- Saying the obvious about Delta levees and subsidence
- What we learned from Jones Tract
- What we didn’t learn
- Levee stability
- Needed science
What this talk is about

• Saying the obvious about Delta levees and subsidence
• What we learned from Jones Tract
• What we didn’t learn
• Levee stability
• Needed science
• Levee integrity and subsidence are tied at the hip
What we learned

Historical perspective:

• Delta levees built-up incrementally since the 1850's by landowners and reclamation districts.
• 43 levee breaks on 36 islands in the Delta since 1971
• Studies show impending peril to Delta: 1-in-4 chance of multiple levee failures from earthquake in the next thirty years.
What we learned

Historical perspective:
• Delta levees built-up incrementally since the 1850’s by landowners and reclamation districts.
What we learned

Historical perspective:

- Delta levees built-up incrementally since the 1850’s by landowners and reclamation districts.
- 43 levee breaks on 36 islands in the Delta since 1971
What we learned

Historical perspective:

• Delta levees built-up incrementally since the 1850’s by landowners and reclamation districts.

• 43 levee breaks on 36 islands in the Delta since 1971

• Studies show impending peril to Delta: 1-in-4 chance of multiple levee failures from earthquake in the next thirty years.
What we learned

Connections:

• levees are essential to the integrity of the water projects.
• Levees owned by private reclamation districts not prepared for levee breaks.
• private land problem became a statewide water resource catastrophe.
• could have cascaded to a much larger problem.
• "ounces of prevention versus pounds of cure"
What we learned

Connections:

• Some levees are essential to the integrity of the water projects.
What we learned

Connections:

• *Some* levees are essential to the integrity of the water projects.

• Private reclamation districts are responsible for maintenance of most Delta levees.
What we learned

Connections:

• Some levees are essential to the integrity of the water projects.
• Private reclamation districts are responsible for maintenance of most Delta levees.
• RD’s lack of resources requires intervention.
What we learned

Connections:

• *Some* levees are essential to the integrity of the water projects.
• Private reclamation districts are responsible for maintenance of most Delta levees.
• RD’s lack of resources requires intervention.
• Private levee problem became a statewide water resource catastrophe.
What we learned

Connections:

• *Some* levees are essential to the integrity of the water projects.
• Private reclamation districts are responsible for maintenance of most Delta levees.
• RD’s lack of resources requires intervention.
• Private levee problem became a statewide water resource catastrophe.
• Could have been much worse.
What we learned

Attitudes toward levees
What we learned

Attitudes toward levees

• Levees are among the most mundane of public works.
What we learned

Attitudes toward levees

• Levees are among the most mundane of public works.
• Levees “aren’t sexy enough,” -- “someone else’s problem until they break.”
What we learned

Attitudes toward levees

• Levees are among the most mundane of public works.
• Levees “aren’t sexy enough,” -- “someone else’s problem until they break.”
• CALFED: levees not in draft Delta improvements plan
What we learned

Attitudes toward levees

• Levees are among the most mundane of public works.
• Levees “aren’t sexy enough,” -- “someone else’s problem until they break.”
• CALFED: levees not in draft Delta improvements plan
• Implicit: Levee constituency is difficult to forge
What we didn’t learn

The media did little probing for benefits and costs to State and federal tax payers
What we didn’t learn

The media did little probing for benefits and costs to State and federal tax payers

• “…We don’t have the resources.., therefore, we need disaster relief...”
What we didn’t learn

The media did little probing for benefits and costs to State and federal tax payers

- “…We don’t have the resources.., therefore, we need disaster relief…”

- Why should the State/feds pay for subsidence cost?
What we didn’t learn

The media did little probing for benefits and costs to State and federal tax payers

• “…We don’t have the resources.., therefore, we need disaster relief…”

• Why should the State/feds pay for subsidence cost?

• What is reclamation district incentive?
What we didn’t learn

The media did little probing for benefits and costs to State and federal tax payers

• “...We don’t have the resources.., therefore, we need disaster relief...”
• Why should the State/feds pay for subsidence cost?
• What is reclamation district incentive?
• Is this disaster relief or subsidy?
The future…
The future…

• Floods will come
The future...

• Floods will come

• Earthquakes will come
The future…

• Floods will come
• Earthquakes will come
• Sea level is rising 1-2 mm per year--accelerating
The future…

- Floods will come
- Earthquakes will come
- Sea level is rising 1-2 mm per year—accelerating
- Subsidence is ongoing ~ 1 foot/decade
The future…

• Floods will come
• Earthquakes will come
• Sea level is rising 1-2 mm per year--accelerating
• Subsidence is ongoing ~ 1 foot/decade
• Delta wide, another Folsom Reservoir is added every twenty years.
The big elephant in the room:
The big elephant in the room:

- agriculture on peat soils causes subsidence and creates the need for ever larger and more expensive levees to maintain the same level of protection.
Subsidence increases levee cost

Levee Strength

Cost

\[\text{Subsidence} \]

\[\text{CO}_2 \]
Subsidence increases levee cost

Levee Strength

Cost

CO_2

Subsidence
Subsidence increases levee cost

Levee Strength

Cost

Subsidence

CO_2

CO_2

CO_2
CALFED: “Beneficiaries Pay”

• CALFED has acknowledged subsidence
CALFED: “Beneficiaries Pay”

- CALFED has acknowledged subsidence
- CALFED programs will be paid for by beneficiaries.
CALFED: “Beneficiaries Pay”

- CALFED has acknowledged subsidence
- CALFED programs will be paid for by beneficiaries.
- Subsidence is really an “impact” of land use.
Calfed: “Beneficiaries Pay”

- Calfed has acknowledged subsidence
- Calfed programs will be paid for by beneficiaries.
- Subsidence is really an “impact” of land use.
- Beneficiaries pay for cost of subsidence.
Levee Integrity depends on:

- Material properties (% organic/mineral)
- Foundation properties (weight baring capacity)
- Levee material unit weight
- Levee geometry
- Vegetation
- Wind fetch/wave attack
- Seismic loading
- Cyclic tidal loading
Levee Design

- Stability
- Seepage
- Overtopping
Slope failure

Usually:
- Disintegration of soil structure
- Increase in pore water pressure
- Seismic shock leading to liquefaction
Slope stability

As an illustration, slopes often fail in a circular rotation pattern:
Slope stability

As an illustration, slopes often fail in a circular rotation pattern:

“Slip Circle”
Slope stability

As an illustration, slopes often fail in a circular rotation pattern:

“Slip Circle”
Slope stability

As an illustration, slopes often fail in a circular rotation pattern:
Slope stability

As an illustration, slopes often fail in a circular rotation pattern:
Slope stability

Slope failure occurs if gravity force is greater than the shear strength of the soil.
Slope stability

“Slip Circle”
Slope stability

“Slip Circle”

Weight of Area 1
Slope stability

“Slip Circle”

Area 1

Weight of Area 1

Area 2

Weight of Area 2
Slope stability

Cohesive Resistance

Area 1

Weight of Area 1

Area 2

Weight of Area 2

“Slip Circle”

Cohesive Resistance
Slope stability

Tillis: “Like a teeter totter:”

“Slip Circle”

Cohesive Resistance

Weight of Area 1

Weight of Area 2

Cohesive Resistance

Area 1

Area 2
Slope stability

Tillis: “Like a teeter totter.”

Cohesive Resistance

“Slip Circle”

Area 1

Weight of Area 1

Area 2

Weight of Area 2

Cohesive Resistance
Slope stability

Tillis: “Like a teeter totter:”

“Slip Circle”

Cohesive Resistance

Weight of Area 1

Weight of Area 2

Cohesive Resistance
Slope stability

Tillis: “Like a teeter totter:”

Cohesive Resistance

“Slip Circle”

Weight of Area 1

Weight of Area 2
Seepage

Seepage reduces cohesive resistance
Seepage reduces cohesive resistance
Subsidence

When the inboard side subsides:

- Cohesive Resistance
- "Slip Circle"
- Weight of Area 1
- Weight of Area 2

Cohesive Resistance

Weight of Area 1

Weight of Area 2
Subsidence

When the inboard side subsides:

- **Cohesive Resistance**

 - **Area 1**
 - **Area 2**

 - **“Slip Circle”**

 - Weight of Area 1
 - Weight of Area 2

 - Cohesive Resistance
Subsidence

Rehabilitation Strategy:

"Slip Circle"

Area 1

Cohesive Resistance

Weight of Area 1

Area 2

Cohesive Resistance

Weight of Area 2

"Toe Berm"
Needed Science

• Risk analysis: probabilities and costs of alternative futures.
• Water quality impacts (modeling)
• Identify proportion of levee cost due to subsidence.
• Consider Delta shallow water ecosystem
• Large scale subsidence reversal research
• Land and water elevation measurement supporting change detection
Needed Science

• Risk analysis: probabilities and costs of alternative futures.
Needed Science

- Risk analysis: probabilities and costs of alternative futures.
- Water quality impacts (modeling)
Needed Science

• Risk analysis: probabilities and costs of alternative futures.
• Water quality impacts (modeling)
• Identify proportion of levee cost due to subsidence.
Needed Science

- Risk analysis: probabilities and costs of alternative futures.
- Water quality impacts (modeling)
- Identify proportion of levee cost due to subsidence.
- Consider Delta shallow water ecosystem
Needed Science

• Risk analysis: probabilities and costs of alternative futures.
• Water quality impacts (modeling)
• Identify proportion of levee cost due to subsidence.
• Consider Delta shallow water ecosystem
• Large scale subsidence reversal research
Needed Science

- Risk analysis: probabilities and costs of alternative futures.
- Water quality impacts (modeling)
- Identify proportion of levee cost due to subsidence.
- Consider Delta shallow water ecosystem
- Large scale subsidence reversal research
- Land and water elevation measurement supporting change detection
Summary

- Levee stability is influenced by many factors.
Summary

- Levee stability is influenced by many factors.
- Subsidence is a primary factor.
Summary

- Levee stability is influenced by many factors.
- Subsidence is a primary factor.
- Science investigation needed to apportion levee system cost appropriately.
Summary

• Levee stability is influenced by many factors.
• Subsidence is a primary factor.
• Science investigation needed to apportion levee system cost appropriately.
• Levee integrity is tied at the hip with land subsidence.
Thank you

• Randy Brown
• Steve Culberson
• Bruce Herbold
• Victor Pacheco
• Curt Schmutte
• Beth Schwehr
• Kevin Tillis